Zeros of Sections of Exponential Sums

نویسندگان

  • Pavel Bleher
  • Robert Mallison
چکیده

We derive the large n asymptotics of zeros of sections of a generic exponential sum. We divide all the zeros of the nth section of the exponential sum into “genuine zeros,” which approach, as n → ∞, the zeros of the exponential sum, and “spurious zeros,” which go to infinity as n → ∞. We show that the spurious zeros, after scaling down by the factor of n, approach a “rosette,” a finite collection of curves on the complex plane, resembling the rosette. We derive also the large n asymptotics of the “transitional zeros,” the intermediate zeros between genuine and spurious ones. Our results give an extension to the classical results of Szegö about the large n asymptotics of zeros of sections of the exponential, sine, and cosine functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the zeros of finite sums of exponential functions

We establish an upper bound for the number of zeros of finite sums of exponential functions defined in the set of real numbers, and then discuss some applications of this result to linear algebra. Also, we record a few questions for classroom conversations on the modifications of our theorem.

متن کامل

Sums of exponential functions having only real zeros

Let Hn(z) be the function of a complex variable z defined by

متن کامل

On divisibility of exponential sums of polynomials of special type over fields of characteristic 2

We study divisibility by eight of exponential sums of several classes of functions over finite fields of characteristic two. For the binary classical Kloosterman sums K(a) over such fields we give a simple recurrent algorithm for finding the largest k, such that 2 divides the Kloosterman sum K(a). This gives a simple description of zeros of such Kloosterman sums.

متن کامل

LOCATING THE ZEROS OF PARTIAL SUMS OF e WITH RIEMANN-HILBERT METHODS

In this paper we derive uniform asymptotic expansions for the partial sums of the exponential series. We indicate how this information will be used in a later publication to obtain full and explicitly computable asymptotic expansions with error bounds for all zeros of the Taylor polynomials pn−1(z) = Pn−1 k=0 z/ k! . Our proof is based on a representation of pn−1(nz) in terms of an integral of ...

متن کامل

Exponential Sums with Real Zeros 3

Let Hn(z) be the function of a complex variable z defined by Hn(z) = ∑ G(±ia1 ± · · · ± ian)e iz(±b1±···±bn) where the summation is over all 2 possible plus and minus sign combinations, the same sign combination being used in both the argument of G and in the exponent. The numbers a1, a2, a3, . . . and b1, b2, b3, . . . are assumed to be positive, and G is an entire function of genus 0 or 1 tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006